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Applications in emergency response, tactical mission planning, and post-event procedure 
development, among others

What makes a good survey of the area?

1. Spatial resolution of mapped area
2. Good spatial coverage of the area
3. Identification of multiple contaminated areas (typically planar sources)

Want to achieve best representative characterization of the entire area efficiently and 
accurately

Radiological contamination mapping
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Sensors on board Safety + efficiencyUAV/drone systems Human operator

Unmanned aerial/ground vehicles (UAV/UGVs) for contamination mapping
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Major Challenges

LIMITED BATTERY LIFE
Move smart

HUMAN OPERATED
Fully autonomous controls

MANY MEASUREMENTS
Predictive mapping capabilities
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Typically a raster-type motion is used with a human operator

Can only characterize contamination in the vicinity of where the sensors have been

Current methods use uniform survey routines
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Many measurements à predictive mapping 
capabilities with sparse observations

Limited battery life à move sensors in 
optimal trajectories

Human operation à fully autonomous 
motion planning procedure

Objective: Develop fully autonomous controls for mobile sensor 
platforms to improve efficiency and maintain performance

Our approach:

1. Gaussian process regression technique 
for full-map predictions

2. Voronoi partitions for maximized areal 
coverage

3. Recursive procedure for optimal motion 
trajectories for sensors
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GPR allows us to predict spatial characteristics by using previously observed data

We assume the data can be modeled as a Gaussian process (GP), defined as a 
collection of random variables where any finite number of the random variables 
have a joint Gaussian distribution

With mean function m(x) and covariance function k(x, x’) defined as

𝑚 𝒙 = 𝔼 𝑓 𝒙

𝑘 𝒙, 𝒙! = 𝔼[𝑓 𝒙 − 𝑚 𝒙 )(𝑓 𝒙! −𝑚 𝒙! )]

Gaussian Process Regression (GPR) model (1/5)

𝒚 = 𝑓 𝒙 ~ 𝐺𝑃( 𝑚 𝒙 , 𝑘 𝒙, 𝒙!
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For our application, the training data represented as

(X = (x1,…,xn)T, y = (y1,…,yn))

X contains features of the output data (n x 2 matrix with latitude and longitude)
y contains output of the data (n x 1 vector with radiation count rates)
Full GPR model defined as

𝑦∗
𝑦#
⋮
𝑦$

~𝒩 𝜇 =

𝑚(𝒙∗)
𝑚(𝒙𝟏)
⋮

𝑚(𝒙𝒏)

, Σ = 𝑘∗∗ 𝑘∗.
𝑘.∗ 𝑘..

y* is the radiation count rates we are predicting at x* unvisited locations

Gaussian Process Regression (GPR) model (2/5)
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Covariance function has the form

𝑘 𝒙𝒊, 𝒙𝒋 = 𝜎*𝑅 𝒙𝒊 − 𝒙𝒋 = 𝜎*𝑅 𝒓 ,

σ2 is the variance of the GP (e.g., statistical uncertainty), r is the Euclidean distance 
between two feature sets, and R(r) is the correlation kernel to describe shape of 
covariance

The correlation kernel describes how y(xi) and y(xj) are related based on the similarity of 
the input feature sets xi and xj (i.e., Euclidean distance between locations).

Gaussian Process Regression (GPR) model (3/5)
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K-fold cross-validation method to verify fidelity of correlation kernel in learning process
1. Take k number of partitions from fixed data set
2. Use the kth partition as training set, and remainder of data as test set
3. Calculate metrics to evaluate “score” of predicting test set

Dataset of 5000 samples used with 5-fold cross validation

Matérn covariance with ν = ½ gives best results

Gaussian Process Regression (GPR) model (4/5)

Kernel RBF RQ Matern, ν = 1/2 Matern, ν = 3/2 Matern, ν = 5/2
Fold1 0.118128 0.057216 0.051642 0.060256 0.069187
Fold2 0.133275 0.057208 0.051003 0.061374 0.071352
Fold3 0.130518 0.05333 0.048089 0.059527 0.070023
Fold4 0.121312 0.055755 0.050824 0.061835 0.072062
Fold5 0.141364 0.055168 0.051861 0.061844 0.07426
Average 0.128919 0.055735 0.050684 0.060967 0.071377



Los Alamos National Laboratory

1/14/21 |   11

MCNP 6.2 simulations of three large planar sources
500 random samples (out of 40,000) used to for full-map prediction
Depends strongly on the location of the samples, does not produce distribution for 
samples < 500

Gaussian Process Regression (GPR) model (5/5)
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Voronoi diagram is a partition of a plane into 
regions close to each of a given set of seed

For each seed, the corresponding Voronoi 
cell consists of all points of the plane closer 
to that seed than any other

Seeds = sensors

𝑉$ 𝑆 = 𝑔 ∈ 𝐺| 𝑔 − 𝑠$ | ≤ 𝑔 − 𝑠+ ,
𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠+ ∈ 𝑆, 𝑓𝑜𝑟 𝑛 𝑠𝑒𝑛𝑠𝑜𝑟𝑠

Voronoi Partition for optimal coverage (1/3)
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How to get actionable information from GPR predicted map?
Take the difference between our current and prior prediction

Ψ 𝑔 = 𝜙! 𝑔 − 𝜙!"# 𝑔

Voronoi Partition for optimal coverage (2/3)

Prior prediction ɸj-1(g) Current prediction ɸj(g)
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Difference of prior and current map used as spatial density function for each Voronoi cell

Voronoi Partition for optimal coverage (3/3)

�D� �E� �F�

Voronoi cells for a three-sensor survey showing current location (white circle), absolute difference between prior and current predictions, and the calculated 
trajectory (towards black circle)
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Recursive motion planning procedure in Python (1/1)

Initialize:
1. Number of 

sensors
2. Sensor starting 

location
3. Uniform prior 

map

Calculate difference 
of map and Voronoi 

cells

Take 
measurement 

and predict map
Convergent 

map?

Move sensors 
towards optimal 

direction

Calculate full-
map prediction 
uncertainties

Final predicted contamination 
map

No

Yes
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Three large planar sources with varying 
activity of Cs-137 gamma rays, scaled 
to 1015 Bq

30 cm soil at ground level

1 km2 area with 40,000 grid points 
(5 x 5 x 5 m binning)

Sensor velocity = 5 m/s
Dwell time for each measurement= 5 s
Ideal detector efficiency (100%)

MCNP 6.2 simulations of radiological contamination (1/1)

𝐸 = 1 −
∑,∈. I|𝜙/012 𝑔 − 𝜙3024(𝑔

∑,∈.𝜙/012 𝑔
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Results (1/5)
Three-sensor GPR 

survey

�D�

�E�

�D�

For an E = 0.90, three-
sensor GPR routine takes 
approximately 1184 s total 
survey time

Prediction uncertainty 
dependent on proximity of 
observed measurement 
locations 
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�D�

�E�

�E�

For an E = 0.90, five-
sensor GPR routine takes 
approximately 745 s total 
survey time

Prediction uncertainty 
dependent on proximity of 
observed measurement 
locations 

Results (2/5)
Five-sensor GPR 

survey
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For an E = 0.90, seven-
sensor GPR routine takes 
approximately 594 s total 
survey time

Prediction uncertainty 
dependent on proximity of 
observed measurement 
locations 

Results (3/5)
Seven-sensor GPR 

survey
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Results (4/5)
Long-term prediction uncertainty

Average for entire area

Total prediction uncertainty decreases as 
more measurements are taken
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Comparison to uniform survey routine

Uniform survey routine in raster-type motion, top to down, left to right.
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Results (5/5)
Comparison to uniform survey routine

GPR survey routine converges to the 
same accuracy given by uniform routine

GPR survey routine produces convergent 
map at a faster rate

Increase in speed of producing map 
while maintaining accuracy
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Summary and Conclusions

Developed a fully autonomous motion planning procedure using GPR predictive mapping 
and Voronoi-partition-based optimal coverage techniques

Simulation studies show that GPR-based survey routine produces an accurate map at a 
faster rate compared to uniform routine

GPR-based survey also provides prediction uncertainties beyond that of counting 
statistics à can provide quantitative metric to determine stopping criteria for surveys
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Some other studies/findings

The GPR-based routine requires at least two mobile sensors; however, it is scalable to 
any number of sensors

Inherently has collision avoidance amongst the sensors due to the Voronoi partitioning

Efficacy of GPR-based routine is independent of number of sources and their relative 
source strength

Performs well with uniform background rates (tested with uniform background rate 1/100 
of maximum source strength)
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Moving forward… let’s test it

Three programmable UGVs purchased

Features:
- 80 lbs payload
- ~ 2.5 m/s velocity
- Negligible turning radius (can turn in 

place)
- Continuously updatable waypoints

On-board Hardware:
- Wireless router for data and controls
- Arduino microcontroller
- GARMIN GPS and IMU

Simple Geiger counters + Raspberry Pi
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Extra slides: 2 moving sensors, 1 static sensor
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Extra slides: seven-sensor with strong background


